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Abstract

For rigorous estimation of cosmological parameters we demand three properties of any probe: 1)
precise observations - measurements with small statistical errors, bountiful measurements, standardizable
measurements with small, understood systematic errors, and measurements over a range in redshift; 2)
accurate models - arising from simple, well determined physics, replete with cross checks, possessing
cosmological leverage (not dependent on one redshift or on an intricate combination of cosmological
parameters); 3) complementarity - combinable with other probes to cross check and break degeneracies.
At the present state of our astrophysical understanding the Type Ia supernova Hubble diagram best
fulfills all three of these conditions for the recent universe.

1 Hubble Diagram

The Hubble diagram, or magnitude-redshift relation, for supernovae transparently traces the expansion
history of the universe. For calibrated candles such as Type Ia supernovae apparent magnitude represents
luminosity distance or equivalently lookback time to the supernova explosion — dimmer means farther in
the past. The redshift measures the expansion factor a since that time, so the magnitude-redshift diagram
gives a(t) directly. Curvature in the Hubble diagram probes evolution in the expansion rate — acceleration
or deceleration — directly related to the values of the component energy densities, dark energy equation of
state, and fate of the universe.

The magnitude or luminosity distance-redshift test probes differing combinations of cosmological param-
eters in different redshift ranges. This is one of its great strengths in that not only is it most sensitive to
changes, e.g. acceleration, occurring in the expansion history of the universe at recent times, but it pro-
vides 1) complementarity to high redshift tests, other medium redshift tests, and even itself; 2) detection
of evolution in the state and nature of the universe by probing different epochs than the cosmic microwave
background, say, and different energy densities (smooth components) than large scale structure tests; 3)
protection against secular or differently evolving systematic effects such as grey dust.

Figure 1 shows the Hubble diagram that combines 18 Calan-Tololo SNe Ia as well as 42 SNe obtained
by the Supernova Cosmology Project, out to z =~ 0.8, while Figure 2 shows a Hubble diagram with about
2800 SNe out to z = 1.7, expected after one year of operation of the proposed Supernova/Acceleration
Probe (SNAP) satellite. The large number of supernovae throughout the redshift range will enable accurate
measurements of cosmological parameters (see Fig. 3), as well as checks on systematics such as supernova
evolution.

2 Redshift Range Requirements

At small redshifts the comoving distance r(z) is insensitive to the dark energy equation of state w for the
simple reason that all cosmological models reduce to the Hubble law (r = Hjy '2) for z < 1,

1 1 3
r(z) ~ Hy' [z -2 (5 + Z(QM +Qx) + anx) + ] for z < 1. (1)

At medium redshifts, z & 0.5—1, the matter density overtakes the dark energy density in both magnitude,
at Zeq, and dynamical influence, at the transition from accelerated to decelerated expansion at z,c, as seen
in Fig. 4.



A S S ; (0,0
B (4,0
247 E E = ‘_“_,— (210)
. 8 - o
Tt 1
. |
I /, Supernova 1
L 7 Cosmology |
éa 20l } Project |
FORNE 4 ]
o 4 1
£ 18- g :
r Calan/Tololo )
16 (Hamuyetal, N
% AJ.1996) .
14 ‘ |
} J@Qu Q)=
) l L 1 50.28, 0.72)
fl‘ — 1 (0, 0)
r— O
- - q, 0)
L
S 67 T
.E 4 b e 7 —
B 2l B e et 8 ]
E 0 roge X %o ° _ ° ° 7
bt o © T 0 oG L O
ks _2;5?..9 ........ S B .
0SSO ]
» 6L ‘ ‘ ‘ ‘ ]
0.0 0.2 0.4 0.6 0.8 1.0
redshift z

PerImutter, et al. (1998)

Figure 1: Hubble diagram with 42 high-redshift supernovae with magnitude residuals from best fit cosmology.
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Figure 2: Hubble diagram with supernovae as expected from one year operation of SNAP.
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Figure 3: Confidence regions in the Q3/-Q, plane from 42 high redshift SNe Ia in Perlmutter et al. (1999)
and as expected from one year operation of SNAP.
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Figure 4: The redshifts of matter-dark energy equality and of the transition from decelerating to accelerating
expansion are plotted vs. equation of state of the dark energy, for a flat universe. The solid curves have
Q= 0.3, the dotted Qp; = 0.4.

At high redshift (z > 5), the sensitivity of 7(2) to w levels off because dark energy becomes an increasingly
smaller fraction of the total energy density, px /par o< (1 + 2)%%.

Figure 5 shows this, along with the sensitivity of other variables: the Hubble parameter H(z) and the
comoving volume element (differential comoving volume per unit redshift per unit solid angle), f(z) =
dV/(dz dw) = 7?(z)/H(z), at the heart of number-redshift tests (e.g., counts of lensed quasars, galaxies, or
clusters of galaxies).

Therefore, observations over the redshift range 0 < z < 2 will be most useful in probing dark energy.
Figure 6 makes this more quantitative, showing the accuracy of the determination of w (assumed constant)
as a function of maximum redshift probed zyax. For 0.2 < zimax < 1, the 1o uncertainty o,, decreases sharply
and then levels, with little decrease for zp,,x = 1.5.

While the sensitivities in Fig. 5 peak at z ~ 0.5 — 1, as do the transitions in Fig. 4, this region is not the
whole story. For one thing, higher redshift SNe are very important to help break parameter degeneracies.
To illustrate the importance of having high redshift supernovae, we investigated the effect of adding 100
supernovae to a large initial sample at lower redshift: 2000 supernovae uniformly distributed in the interval
z € [0.2,1.2]. Figure 7 shows the effect on the errors of Q,, and Qx when adding 100 supernovae to the
samples outlined above. As expected, high redshifts pay off when determining €2, and Qx, but in case the
knowledge of M is poor, it is also important to fill in the low redshift region. In fact one can prove [2] that
there are three “sweet spots” in redshift when Qj; and Qx are to be determined: z = 0, 2 = 2zpax, and
2 & (2/5) Zmax-

Second, to discriminate between dark energy models, whether between cosmological constant, constant w
models, or evolving w(z) quintessence models, it is necessary to extend the survey depth to z &~ 1 — 2. This
reveals the physical imprint of differential acceleration, the dilution of the effective equation of state due to
the increasing dominance of matter, and the turnover to a decelerating expansion including the “inertia”
of the magnitude-distance relation that integrates over the equation of state from the source epoch to the
present [3].

3 Statistical Uncertainties for Parameter Estimation

Data on supernovae peak magnitudes, with uncertainties, over a redshift range are translated into cosmo-
logical parameter estimation. We investigate the accuracy of these estimations based on one year of data
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Figure 5: The relative sensitivity of r(z), f(z), and H(z) to a change in the constant value of w.
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Figure 6: Estimated 1o errors in determining (constant) w as a function of maximum redshift probed zmax
for a flat Universe, 2566 SNe and marginalizing over the other parameter, ;. The upper curve shows
the uncertainties using the fiducial SNAP distribution cut-off at zmax and renormalizing to keep the total
number of SNe constant. The lower curve shows uncertainties obtained using the mathematically optimal
distribution, with equal number of SNe located at each of three redshifts: z =0, z & 2/5 zmax and z = zmax-

in the SNAP scenario ([5]; an intrinsic peak magnitude dispersion of SNe Ia of 0.15 magnitudes with ~ 50
supernova, per redshift bin gives a magnitude uncertainty of 0.02 magnitudes), and some variations on it (see
[1] for more detail).



Effect of adding 100 SNe to initially 2000 uniformly in (0.2, 1.2)

£0.03 5 0.2 : : :
s £ © L i i i
0.025 r | | |
£ 0.15— Frenee e
0.02 [~ C ‘ ‘
0.015 | T
001 . F :
£ 0.05 f—uwniinnhnun s i
0-008 = -
o . L L L ‘ o Ll L L ‘
o 0.5 1 1.5 2 o 0.5 1 1.5 2
z z
Qm QX
£0.03 5 0.2
s £ © L
0.025F C
= 0.15 [
0.02 |~ L
0.015 F-rimnnnin it nnne 0.1~
0.01 [ C
= 0.05 —
0.005 [— ‘ ‘ ‘ L ‘ ‘ ‘
o Eu - L - s o - L L s
o 0.5 1 1.5 2 o] 0.5 1 1.5 2
z z
Q. Mscript unknown Q, Mscript unknown

Figure 7: The effect on the uncertainties in Qs and Qx of adding 100 SNe at a given redshift, for three
different w(z). The top panels assume the supernova absolute magnitude M is known, the bottom unknown.

3.1 Confidence regions for (£2,,,2,)

First, let us assume that the dark energy corresponds to a cosmological constant Qx = Q,, i.e. w = —1.
Figure 8 shows confidence regions for (Q,,, ) for various situations. We see:

e The few events at high redshift (z > 1.2) result in about 25 % better determination of Q4. This
emphasizes the importance of obtaining at least a few supernovae at high redshift.

e Lack of prior knowledge of M (the supernova absolute magnitude folded with the Hubble constant)
severely degrades the precision in Q4. This illustrates the importance of having supernovae at low
redshifts.

e Prior knowledge of €2, with oq,, _prior = 0.05 Gaussian around the true value is too rough to appre-
ciably enhance the precision.

3.2 Confidence regions for (wg, w)

Next, we allow for w # —1 and consider the ability to determine the equation of state of the dark energy to
linear order, w(z) = wo+w; 2z, assuming flatness and some prior knowledge of Q,,,. Figure 9 shows confidence
regions for various situations. We find:

e When M is exactly known, the few high-z supernovae are not so important in determining (wg, w1 ) as
they are for (,,,, Qx), basically because 2x becomes less significant with increasing redshift. However
the high-z events make some difference when M is poorly known.

e The precision degrades considerably when there is no prior information of M.
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Figure 8: 68.3 % confidence regions for (£2,,,Q4). The first panel is for the one-year SNAP scenario; the
middle one is for the one-year SNAP scenario without the 100 events at z € [1.2,1.7]; and the last panel
is for the one-year SNAP scenario with a constant rate per co-moving volume for z € [0,1.2], and the 100
z € [1.2,1.7] events uniformly distributed. The filled region (solid line) assumes exact knowledge of M, and
the dashed line within the filled region assumes also a prior knowledge with ,, Gaussian around the true
value and oq,, —prior = 0.05. A full three-parameter fit with no prior knowledge of M is assumed for the
two larger confidence regions: the region with a dotted line assumes no prior knowledge of €2,,, while the
dash-dotted line assumes a prior knowledge with 2, Gaussian around the true value and oq,, —prior = 0.05.
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Figure 9: 68.3 % confidence regions for (wg,w;). The first panel is for the one-year SNAP scenario; the
middle one is for the one-year SNAP scenario without the 100 events for which z € [1.2,1.7]; and the last
panel is for the one-year SNAP scenario with a constant rate per co-moving volume for z € [0,1.2], and the
100 z € [1.2,1.7] events uniformly distributed. The elongated ellipses correspond to the assumption of exact
knowledge of €,,: the dash-dot-dot-dotted line is with exact M and the long-dashed line corresponds to
no knowledge of M. The larger, non-elliptic regions assume prior knowledge of (2,,: the dash-dotted line
assumes that ,, is known with a Gaussian prior for which oq,, prior = 0.05; the short-dashed line assumes
the same prior and exact knowledge of M; finally, the solid line is with €2,,, confined to the interval €2, £0.1
and exact knowledge of M.
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Figure 10: 68.3 % confidence regions for (wg,w1) in the three-year SNAP scenario. The elongated ellipses
correspond to the assumption of exact knowledge of €2,,,: the dash-dot-dot-dotted line is with exact M and the
long-dashed line corresponds to no knowledge of M. The larger, non-elliptic regions assume Gaussian prior
knowledge of Q,,: the dotted line is with ogq,, —prior = 0.05, while the dash-dotted line is with oq_, —prior =
0.015. The solid and short-dashed lines assume exact knowledge of M with the same (2,,, priors as above.

To better constrain the equation of state we consider the expected three years of SNAP operation
(i.e. three times as many supernovae) and a sharper prior oq,, _prior = 0.015, consistent with the esti-
mated precision of a hypothetical ground based 10° x 10° weak lensing survey ([6]; note SNAP will carry out
a 300 square degree space based lensing survey). Uncertainties in wg and w; go down to wg = —1 + 0.02,
wy = 01912 with an exact M, and wo = —1+0.04, w; = 01913 with no prior on M, constraining the nature
of the dark energy quite well as seen in Fig. 10.

4 Discussion

It is important to realize that data at low as well as high redshift are required for optimal parameter
estimation. Events at very low redshift help to fix the intercept M, while a wide range of redshifts is needed
to address systematics and to break the degeneracies in the luminosity distance between different cosmologies
and different dark energy models. Complementary constraints, e.g. on Qs or e, from other cosmological
probes play a crucial role in limiting the parameter space of alternate models.

The expansion history of the universe revealed redshift by redshift by supernovae and other measurements
sets forth the dark energy nature and evolution in a kind of cosmic tomography and directly probes the vac-
uum energy potential. With the Hubble diagram fulfilling the criteria listed in the introduction for a rigorous
probe, we have the potential to advance as one our cosmological and fundamental physics understanding.
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